15. Прогнозирование погоды с использованием LSTM сети

Задача: Анализ временных рядов метеорологических данных

Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.


Построение LSTM сети для прогнозирования погоды

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать временные ряды метеорологических данных.

– Разделить данные на обучающую и тестовую выборки.

– Масштабировать данные для улучшения производительности обучения модели.

2. Построение модели LSTM

Рассмотрим архитектуру LSTM сети для прогнозирования погоды:

– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.

Пример архитектуры нейронной сети для прогнозирования погоды:

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

# Пример построения LSTM модели для прогнозирования погоды

# Подготовка данных (вымышленный пример)

# Загрузка и предобработка данных

# Пример данных (вымышленный)

# Здесь данные должны быть загружены из вашего источника данных

# Давайте представим, что у нас есть временной ряд температур

data = pd.DataFrame({'date': pd.date_range('2022-01-01', periods=365),

'temperature': np.random.randn(365) * 10 + 20})

# Масштабирование данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_data = scaler.fit_transform(data['temperature'].values.reshape(-1, 1))

# Формирование датасета для LSTM

def create_dataset(data, look_back=1):

X, Y = [], []

for i in range(len(data) – look_back – 1):

X.append(data[i:(i + look_back), 0])

Y.append(data[i + look_back, 0])

return np.array(X), np.array(Y)

# Разделение данных на обучающую и тестовую выборки

train_size = int(len(scaled_data) * 0.8)

test_size = len(scaled_data) – train_size

train, test = scaled_data[0:train_size], scaled_data[train_size:len(scaled_data)]

# Создание dataset с look_back временными шагами

look_back = 10 # количество предыдущих временных шагов для использования в качестве признаков

X_train, Y_train = create_dataset(train, look_back)

X_test, Y_test = create_dataset(test, look_back)

# Изменение формы данных для LSTM [samples, time steps, features]

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

# Построение LSTM модели

model = Sequential()

model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))

model.add(Dropout(0.2))

model.add(LSTM(units=50))

model.add(Dropout(0.2))

model.add(Dense(units=1))

# Компиляция модели

model.compile(optimizer='adam', loss='mean_squared_error')

# Обучение модели

model.fit(X_train, Y_train, epochs=50, batch_size=32)

# Прогнозирование на тестовых данных

predicted_temperature = model.predict(X_test)

# Обратное масштабирование предсказанных значений

predicted_temperature = scaler.inverse_transform(predicted_temperature)

# Визуализация результатов

plt.figure(figsize=(10, 6))

plt.plot(data['date'][train_size + look_back + 1:], test, label='Истинные значения')

plt.plot(data['date'][train_size + look_back + 1:], predicted_temperature, label='Прогноз')

plt.title('Прогноз температуры с использованием LSTM')

plt.xlabel('Дата')

plt.ylabel('Температура')

plt.legend()

plt.show()

```

Пояснение архитектуры и процесса:

1. Подготовка данных: В примере мы создаем вымышленные данные о температуре. Данные масштабируются с использованием `MinMaxScaler` для нормализации в диапазоне [0, 1]. Затем данные разделяются на обучающую и тестовую выборки.

2. Формирование датасета для LSTM: Функция `create_dataset` создает датасет, разделенный на признаки (`X`) и целевую переменную (`Y`) с заданным количеством временных шагов (`look_back`).

3. Построение LSTM модели: Модель состоит из двух слоев LSTM с уровнем отсева `Dropout` для предотвращения переобучения. Выходной слой является полносвязным слоем `Dense`, который предсказывает следующее значение температуры.

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функцией потерь `mean_squared_error` для минимизации ошибки прогнозирования.

5. Прогнозирование и визуализация: Модель обучается на данных обучения, затем прогнозирует температуру на тестовом наборе данных. Предсказанные значения обратно масштабируются и визуализируются с истинными значениями.


Преимущества использования LSTM для прогнозирования погоды:

– Учет временных зависимостей: LSTM способны учитывать долгосрочные зависимости в данных о погоде.

– Обработка последовательных данных: Нейронные сети LSTM могут обрабатывать временные ряды без явного определения признаков.

– Прогнозирование на основе исторических данных: LSTM могут использоваться для прогнозирования будущих значений на основе прошлых наблюдений.

Этот подход может быть адаптирован для реальных данных о погоде, что позволяет улучшить точность прогнозирования и обеспечить более эффективное управление ресурсами в зависимости от прогнозируемых метеорологических условий.

Загрузка...